Dynamic Run-Time HW/SW Scheduling Techniques for
Reconfigurable Architectures’

Juanjo Noguera
Research & Development Dept.
Hewlett-Packard InkJet Commercial Division {}{CD}

inoguera @bpo.hp.com

ABSTRACT

Dynamic run-time scheduling in System-on-Chip platforms has
become recently an active area of research because of the
performance and power requirements of new applications.
Moreover, dynamically reconfigurable logic (DRL) architectures
are an exciting alternative for embedded systems design.
However, all previous approaches to DRL mubi-context
scheduling and HW/SW scheduling for DRI architectures are
based on static scheduling techniques. In this paper, we address
this problem and present: {1) a dynamic scheduler hardware
architecture, and (2) fowr dynamic run-time scheduling
algorithms for DRL-based mulii-context platforms. The
scheduling algorithms have been integrated in our codesign
environment, where a large number of experiments have been
carried out. Resnhs demonstrate the benefits of our approach.

Keyweords

Dynamic run-time scheduling. reconfigurable architectures.

1. INTRODUCTION

Scheduling the tasks of an embedded system on a “System-On-
Chip (50C)” platform is one of the main challenges in HW/SW
codesign. A scheduling policy is said to be s1aric when tasks are
executed in a fixed order determined at compile-time, and
dynamic when the execution order is decided at run-time. There
is a wide range of approaches to static scheduling [2]. However,
recently there has been a growing nterest in the development of
run-time scheduling techniques for plaform-based designs
[9]£14]. This interest is due to several reasons:

" This work is funded by CICYT-TIC project TIC2001-2476-C03-02
and DURS! project 2001SGRO0226. Juanjo Noguera acknowledges the
support of Hewlen-Packard ICD in'the preparation of his PhD thesis.

Permission to make digital or hard copies of all or part of this work for
personal o7 classtoom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copics bear this nolice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribinle to lists,
requires priot specific permission and/or a fee.

CODES'02, May 6-8, 2002, Estes Park, Colorado, USA.

Copyright 2002 ACM 1-58113-542-4/02/0005...35.00.

Rosa M. Badia
Computer Architecture Dept. (DAC)
Technical University of Catalonia (UPC)

rosab@ac.upc.es

» A growing class of embedded systems need 1o execute
rultiple applications concurrently [9) rather than just a single
application. An example is a set-top box application where
audio, video and graphics applications run simuitancousty.
Additionally, these applications may have to be dynamically
invoked (i.e. mmn or stopped at user request) or may have an
mntrinsic dynamic behavior (e.g. MPEG4) [14).

* Typical scheduling algorithms assume that the task’s execution
time is the worst-case execution time (WCET) [2]. However,
systems designed using WCET estimates could be highly
under-utilized. The execation time of a task is rarely
deterministic. For instance, it could be “data-dependent™ (e.g..
ron-dength encoding of video frames depends on the
information within frames). Moreover, the execution time
could depend on the available resources, especially when
multiple applications share a system.
Achieving energy-efficient computation is a major challenge
in embedded systems design. Dynamic power management (3]
1s a design methodology that dynamically adapts an embedded
system to provide the requested services and performance
levels with a minimum number of aclive components. This
methodology is based on the idea that not all system
components are always fequired to be in the active state, and
peak performance is only required during some time intervais.
Addijtionally, the importance of having on-chip programmable
logic regions in System-on-Chip platformns is  becoming
increasingly evident. Partitioning an application among sofiware
and programmable logic hardware can substantially improve
performance, but such partitioning can also improve power
consumption by performing computations more effectively and
by allowing for longer microprocessor shutdown periods.

In this area of Reconfigurable Compuiing (RC), Dynamic

Reconfiguration has emerged as a particularly auractive

technique to increase the effective use of programmable logic

blocks. Dynamically Reconfigurable Logic {DRL) devices allow
the change of the device configuration on the fly during system
operation, A clear example is the C52112 chip from Chameleon

Systems, Inc {1]). This device integrates a RISC core, embedded

mernory, and Tour run-time reconfigurabie logic blocks.

However. this attractive idea of tme-multiplexing the needed

device configuration does not come for free. The reconfiguration

latency has to be minimized to improve performance. There are
two main approaches to address this challenge.

205



One of these approaches is known as temporal partitioning, in
which the system specification must be partitioned into temporal
exclusive segments (called reconfiguration comexts) [13). A
different approach is to find an execution order for a set of tasks
that meets system design objectives (e.g. minimize the execution
time), which is usually known as DRL multi-context scheduling
[LOJf13].

1.1. Contributions of the paper

All existing approaches to DRL multi-context scheduling are
based on siatic (compile time) scheduling lechniques, which
assume that tasks have a fixed (deterministic) execution time.

To the best of our knowledge, no previous work has been carried
out in order to define a dynamic run-time HW/SW scheduling
approach for DRL-based multi-context platforms.

In this paper, we address this open problem and presemt four
dynamic run-time scheduling algorithms for dynamically
reconfigurable architectures. Moreover, we present a hardware
architecture for the implementation of the dynamic run-time
scheduler. This hardware implementation is thought to minimize
run-time scheduling overheads.

The paper is organized as follows: Section Z is an overview of
previous work. Section 3 introduces our HW/SW codesign
methodology, which is based on a dynamic nm-time scheduling
strategy. In section 4, we explain the basic architecture of the
dynamic run-time scheduler. Section 5 presents four dynamic
run-time scheduling algorithms. In section 6, we explain the
experiments that we have carried out, and give the obtained
results, Finally, section 7 presents the conclusions of this work.

2. PREVIOUS WORK

Software scheduling for real-time embedded systemns have been
widely covered in the liverature. Balarin et al. present a survey of
these techniques in (2]. Most of the work related with dynamic
scheduling can be classified as fixed priority or dynamic priority
assignment policies. Rate Monotonic Analysis (RMA) is an
example of fixed priority dynamic scheduling. Earliest Deadline
First (EDF) is an example of dynamic priority assignment policy.
EDF offers attractive theoretical improvements over RMA,
however EDF is not widely used in embedded sysiems because
of its costly run-time overhead. To the best of our knowledge
there is not any approach to DRL multi-context scheduling which
uses a fixed priority dynamic scheduling technigue.

In the other hand, several references can be found addressing
temporal pantitioning for reconfiguration latency minimization
[13]. Moreover, configuration prefetching techniques are used to
minimize reconfiguration overhead. They are based on the idea
of loading the next reconfiguration context before it is required,
hence overlapping device reconfiguration and application
execution. Hauck firstly introduced configuration prefetching in
[7], where a single-context prefetching technique is presented.
DRL multi-context scheduling has been addressed in many
publications [10]. However, all these approaches are based on
static {compile-time) scheduling techniques. Moreover, these
previous approaches do not address HW/SW scheduling.

In [4] an integrated algorithm for HW/SW partitioning and
scheduling, temporal panitioning and contex: scheduling is
presented. This approach is similar to [5] and [8] which address
HW/SW scheduling for dynarmucally reconfigurable devices.
However, they are also based on static scheduling algorithms.

3. HW/SW CODESIGN METHODOLOGY

3.1. Definitions

In our approach, we model a single application as a task graph.
Concurrent and multi-function systems are modeled as a set of
severa) task graphs. A task graph is a directed acyclic graph
where each node represents a task. Each task is associated with a
task rype. A task represents a coarse grained computation in an
embedded system (e.g., loops are examples of tasks). An
embedded system may contain more than one task of the same
type (e.g. a DCT task may occur in several video applications).
Each task has associated a priority of execution. This priority is
calculated and assigned to each task statically (at compile time).
Tasks are connected using directed edges. Edges represent data
dependencies between tasks. Each edge is associated with a
scalar denoting the amoumt of data that must be iransferred
between the tasks it connects. A task may begin execution only
after all its incoming edges have been executed.

Once a task is ready for execution, this is explicitly indicated by
an evenr. An event consists of the following information: Taskid,
TaskGraphld', TaskPrioriry and TaskTvpe. Events are
sequentially ordered by the TaskPrioriry field. The list of sorted
events js the Event Streqm.

A Funcrional Unir is a physical component (i.e. DRL device or
SW processor) that executes tasks. A DRL device has an’active
reconfigurarion coniext, which in our methodology, is associated
10 a task type. [f it is required to process a new task, which has a
different task type from the currently loaded in the DRL device, a
reconfiguration will be needed.

During the processing of a task, a functional unit can be in
several stares (e.g., execution, reconfiguration, etc.). We also
define the funcrional unit active ser 10 include the following
information: functional umit state, Taskld, TaskType and
TaskGraph, of the task being processed in the {unctional unit.

3.2. Codesign Methodology

Tke proposed methodology [!1[12] is divided into three stages:
Application Stage, Static Stage and Dynamic Siage. The
application stage is focused on the system specification.

The swatic stage mcludes: (1) extraction, (2) estimation, (3)
HW/SW partitioning, and (4) HW and SW synthesis. The
extraction phase has two main objectives: (1} obtain the task
graph representation from the system specification and assign 10
each task a priority of execution, and (2) obtain a list of
independent task types found in the task graph(s). The estimation
phase can use typical estimators (e.g., delay and area) that can be
obtained wsing high-level synthesis and profiling tools. The
HW/SW partitioning phase decides which task rypes wiil be
executed in reconfigurable HW and which in SW.

HW/SW partitioning has been demonstrated to be a critical point
when targeting DRL architectures [12]. The dynamic scheduling
results highly depend on the quality of the HW/SW partitioning,
which helps to reduce the run-time reconfiguration overhead.
The dynamic siage includes HW/SW Scheduling and DRL Mulyi-
Context Scheduling. Both of them run in paratlel and base their
functionality on events present in the event stream. To beuer
understand how this works, let us explain the target architecture.

! TaskGraphid identifies the task graph to which the task befongs

206



ORL-Dased Hardware Co-processor Architectum

. | Fane Bark, i

i
£

-—X v_Memory Crosstar >
H 3 ]
D =] - ) |
5 b DRL Ay & | i
 S— — > DAL Conlen | |
Cormgn B3] r ARk {
| Evanl Straam
Event Bus ; Rasd
|piemupis m‘tmum.
. >
[y
System Bus. v
& =>

Figure 1. Target Architecture.
The target architecture is depicted in fig. I. It is a heterogencous
architecture, which comprises a software processor, a DRL-based
hardware architecture and shared memory resources. The CPU is
a uniprocessing system and it can execute only one task at a time.
The HW/SW and DRL Multi-Context Scheduler are mapped to
hardware using a centralized contro! scheme. DRL contexts are
stored in the DRL Context memory. The Event Stream is stored
in the Event Stream memory.
Events are executed in the DRL Array or in the CPU. The data
that must be transferred between tasks executed in the DRL
Array is stored in the RAM banks. A concrete DRL may access
ahy RAM bank using the Memory Crossbar. Several memory
accesses to different banks are possible concurrently. A read and
write operation are possible concurrently in a single bank.
The HW/SW and DRL schedulers co-operate and run in parallel
during application run-time execution, in order to meet system
constraints. Their functionality is based on the use of a look-
ahead strategy into the event stream memory. Evernr Window
(EW} is the number of events that are observed in advance.
At run-time, the HW/SW scheduler assigns events to functional
units and decides the execution order of the events stored in the
event window. The DRL multi-context scheduler is used to
minimize reconfiguration overhead. The objective of the DRL
muiti-context scheduler is to decide: (1) which DRL must be
reconfigured, and (2) which reconfiguration context (task type)
must be loaded in the DRL. This scheduler tries to minimize this
reconfiguration overhead by overlapping the execution of events
with DRL reconfigurations.

4. A SCHEDULER ARCHITECTURE FOR
RECONFIGURABLE PLATFORMS

4.1. Dynamic Scheduler Architecture

In this section, we will explain the internal architecture of the
centralized scheduler (HW/SW and DRL multi-context), This
architecture is shown in figure 2. The proposed architecture is
divided in three main parts: (1) The Dynamic Scheduling
Algorithm, (2) The Graph Dependence Check Logic, and (3) The
Event Stream Memory Interface Logic.

This dynamic scheduler architecture can be seen as two processes
that run concurrently and interact using a shared memory. There

is a producer process (the Graph Dependence Check Logic) and
a consumer process (the Dyramic Scheduling Algorithms). Both
processes produce and consume events, which are stored in the
event stream memory {Event Stream Memory Interface Logic).
The Graph Dependence Check Logic knows the functional unit
active set (functional unit state, Teskld, TaskType and
TaskGraph) of all DRL’s and CPU. It also receives the interrupts
signals indicating that a concrete execution has finished.

In case, & concrete DRL or CPU has finished the execution of a
task, new rasks may become ready for execution if all its
dependences have been completed. This is the main function of
the Graph Dependence Check Logic block. This module
internally has the required data structeres to check task
dependences. In the next section, this module will be explained
in more detail. If new tasks become ready for execution this
module generates new events, which are inseried in the event
stream memory using Event Stream Memory Interface Logic.

The event swream consists of a sorted list of events. Events are
sorted by the TaskPriority field of the event. This TaskPrioriry
field is assigned to each task at compile time. Several priority
functions can be used for this objective (e.g., number of output
edges of the task, critical path analysis, etc.).

The event window block consumes events from the event stream
memory. This will occur at the end of the execution of an event,
when a concrete functional unit is available to process a new
event. The event with the highest priority within the event stream
will be inserted in the event window. Within the event window,
there are events being processed and events waiting for
execution. All events waiting for execution within the event
window are candidates for execution. From all these events, the
dynamic scheduling algorithm must select a concrete event for
execution. This selection process changes depending on the
scheduling algorithm, which may depend on several
characteristics of the evems (e.g., priority, task type, etc.).

The Dynamic Scheduling Algorithm block implements the
dynamic run-time HW/SW and DRL multi<ontext scheduling
algorithms. It assigns events to functionai units (DRL’s or CPLj)
and specifies the execution order of events present in the event
window. In order to implement this functionality it knows the
current functional units active sers. The scheduling policy
depends on the event window size (i.e. number of events which
are input to the dynamic scheduling algorithm). In section 5,
several dynamic scheduling algorithms are explained.

inlettuis
4.
.2
sen
Qraphs Depancence
| Check Logic Eveniln
Evenl Suoam
Wemory
} Intartace Loge:

Evert Window

Conta By

Qynamee Schaculing
] Agorten

ACkvo Saa) Infofington

Evant Bus

mgﬁsgﬁ
T

f
System Bus

Figure 2. Dynamic Scheduler Architecture

207



nmlupn
SET Mt TEST wpra
o= 1T
S 1 sh]e Ls
STl
5. Ol
JUOC Latizl SET., TEST.
Sctwg Sax1)
L
B s cOMP
—
Ever L

Figure 3. Graph Dependence Check Logic
4.2. Graph Dependence Check Logic

As previopsly infroduced, the majn goal of this block is to
generate new events, which are inserted in the event stream.
These new events are generated at the end of the execution of a
task. The architecture of this block is shown in figure 3.

In this architecture, there are three main components: {1} the
Successors List (SUCC lists), (2) the SET Marrix, and (3) the
TEST Marrix. These three components must be replicated for
each task graph. The successors list maintains for each task a list
of all its successor tasks with their associated information
{TaskType and TaskPriority). The SET martrix stores, for each
task, which ones of its predecessor tasks have finished its
execution. Finally, the TEST matrix stores for each task which
tasks must be previously executed. This matrix should be
initialized before the application begins its execution.

This architecture supports several tasks finishing at the same
time. Thus, a selector block decides which finished active set js
processed first. The finished task (FT;) identifier is used as input
to the successors list block. These successor tasks are the output
of this block, and they are processed sequentially. The following
process is repeated for each successor task (§/3:

* The successor task id. is used to address the SET matrix in
order to know the predecessor tasks that have been executed.

* The read data from the SET matrix is used to update the
completed dependences of the task, performing a bit-wise OR
function with the decoded finished task identifier. ~

» This updared information of task’s completed dependences is
compared with the value read from the TEST matrix. In addition,
the SET matrix is updated.

® Finally, if the values read from both matrices are equal, a
new event is generated and the inserr signal is asserted,
indicating that the event must be inserted in the event stream.

5. SCHEDULING ALGORITHMS

5.1. Single In-Order Dynamic Scheduling

The first dynamic scheduling algorithms (HW/SW and DRL
multi-context scheduling) were presented in [11).

In this approach, a single event is being executed on a functional
unit (DRL or CPU) at the sarne time. In addition, it is in-order
because the scheduling algorithm processes events following the
order in which they are consumed from the event stream.
Hardware/Software Scheduling

This algorithm follows a Firsr-In-Firs:-Our policy for the
scheduling of the events within the event window.

A second objective of the HW/SW scheduler is 10 manage the

functional units active sets (l.e., functional unit state, Taskld,
TaskType and TaskGraph). It is important 1o explain the states
required to process an event (see figure 4).

In the figure 4.a., the HW/SW scheduler assigns one event 1o be
processed in a DRL that is in the idle state. Depending on the
active reconfiguration contexts, a DRL reconfiguration may be
initiated. In addition, it is always mandatory to change the active
Taskid (rask switch state). Finally, it is possible that a DRL
finishes reconfiguration and task switch, but the event cannot be
executed because the previous events in the event window have
not finished. In this case, the DRL enters into the wair state.
Figure 4.b., has a similar funcuonality for the CPU. The major
changes are related with the HW/SW communication. In order to
minimize communications overheads, it is possible to start the
CPU communication process, while an evem is being executed in
the DRL array. As in the case of DRL, the CPU has a wair state.

DRL Multi-Context Scheduling

However, in order to minimize reconfiguration overheads 1o the
HWsSW scheduler, it is possible 10 use a reconfiguration pre-
Sfetching scheme, which overlaps the reconfiguration of a DRL
with the event execution in another DRL. From the
reconfiguration contexts that are loaded in the DRL array, and
the task types which are required within the event window, the
DRL multi-context scheduler decides: (1) which reconfiguration
context must be loaded, and (2) in which DRL it wiil be loaded.
This algorithm is executed at the end of the execution of a
concrele event. At that time, a new event starts its execution and
a new even! enters in the event window. This insertion probably
means that a new reconfiguration context will be required.

The basis of the proposed DRL multi-context scheduling
algorithm is to obtain an array that represents the required
reconfiguration contexts within the evemt window. This array is
obtained from the current state of the DRL’s and from the event
window. Afterwards, the algorithm obtains from this array the
number of DRL contexts that are not required within the event
window. If there is not any DRL available for reconfiguration,
the algorithm selects (to reconfigure) the DRL that has an active
reconfiguration context that will be required latest {remember
that evemnus are processed using a FIFO policy). Note that this is
not a typical LRU replacement policy. Finally, the first
reconfiguration context found in the event window, which is not
loaded within the DRL artay will be loaded.

5.2. Single Out-of-Order Dynamic Scheduling
As in the previous algorithm, a single event is executed on a
functional unit at the same time. The main difference of this
algorithm with the previous one is that events are executed our-
of-order. That is, events may be execuled in a differem order
from the one in which they enter in the event window.

Hardware/Software Scheduling
The key poini of this approach is the selection {within the event
MMWII

. = rm )/ \
0—7/@ S
(]
SR =
(a) 03]
Figure 4. Single Event Execution: DRL and CPU states.

208



window) of the next event to be executed. In the previous case,
the algorithm follows a Firse-In-First-Our policy. However, the
previous approach has two main drawbacks:

= It may occur that the next event to be scheduied cannot be
executed because it has not finished the DRL reconfiguration
and/or task switch. In this case, no useful computation is carried
out in any functional ohit.

= It may also occur that the DRL array suffers an excessive
number of reconfigurations, which indeed means that it spends
more time reconfiguring than performing useful computations.
This single out-of-order scheduling algorithm tries to overcome
these limitations. This is achieved changing the selection criteria
of the next event to be executed. In this new approach, the next
event selected for execution will be such that:

(1) There is an active reconfiguration context within the DRL
array ready for the execution of an event.

(2) From ali the events within the event window that meet the
previous condition, select the event with the highest priority.
This selection criteria has as main goal to process consecutively
(in the same DRL) events which require the same reconfiguration
context. Thus, reconfiguration overhead can be reduced.

In this approach, the used finite state machines for the functional
units (fig. 4) and the DRL multi-context scheduler algorithm are
the same as the ones described in the previous section.

5.3. Concurrent Dynamic Scheduling

Qur target architecture is a multi-processor architecture (fig. 1).
Executing a single event at the same time prevents the
architecture of achieving high throughput or utilization. This new
approach schedules a new event while multiple events can be
executing concurrently.

Hardware/Software Scheduling

In this approach, it is important 1o note that the several states
required to process an evenlt have changed. This functionality can
be observed in figure 5. The major difference between figures 4
and 5 is that the wait state has disappeared. Having a functional
unit in the wait state limits the concurrent execution capability.
This algorithm is executed at the end of the execation of an event
or when a DRL finishes its reconfiguration process. In this
approach, the next event selected for execution will be such that:
(1) There is an aclive reconfiguration context within the DRL
array ready for the execution of an event,

(2) From 2ll the events within the event window that meet the
previous condition, select the event with the highest priority.

DRL Muiti-Context Scheduling

This algorithm is executed at the end of the execution of a
concreie event, if 2 new event cannot be scheduled for execution
by the HW/SW scheduler.

At that time, a new event will enter in the event window, and
probably, a new reconfiguration context will be required. This
needed reconfiguration context will be loaded in the DRL which

e
@

\@ E

Figure 5. Cancurrent Event Execution: DRL and CPU states.

is in the idle siate. It is important to note that no replacement
policy is needed in this new approach, because whenever the
DRL multi-context scheduler is executed always there wiil be 2
DRL available for reconfiguration.

The algorithm also selects a reconfiguration context to be loaded.
The reconfiguration context (which is not currently loaded in the
DRL array) associated to the highest priority event found in the
event window will be selected to be loaded.

5.4. Dynamic Scheduling with Replication

Due to the previous DRL multi-context scheduler policy, all
events being executed use a different reconfiguration context.
Thus, in the DRL array there are not two DRL’s, which have
loaded the same reconfiguration context.

It is possible to find an application in which multiple tasks
requiring the same reconfiguration context could be executed
concurrently. In our approach, this situation is shown when
multiple events, which require the same reconfiguration context,
are found in the event window.

Executing this sitration using the concurrent dynamic scheduling
algorithm has a main drawback: all events requiring the same
reconfiguration context will be processed sequentially in the
same DRL, while other DRL’s rnay be in the idle state.

It is possible to improve the performance of the previous
scheduling algorithm by having the same reconfiguration contexi
loaded in several DRL’s. This is the objective of the concurrent
dynamic scheduling algorithm with replication.

In this new approach, the HW/SW scheduler has the same
functicnality as the one presented in the previous subsection. The
DRL multi-context scheduler has been modified (in the selection
of the mext reconfiguration context to be loaded) to allow the
same reconfiguration context to be loaded in several DRL's.

6. EXPERIMENTS AND RESULTS

We have impiemented the four explained dynamic run-time
scheduling algorithms in our HW/SW codesign framework [11].
Our HW/SW co-~simularion tool accepts task graphs generated by
TGFF [6]. In these experiments, we used the HW/SW
partitioning algorithms proposed in [12]. In order to test the
presented scheduling algorithms, we have performed a large
numbers of experiments (more than 3000 simulations).

Important parameters to study and its effect on the scheduling
algorithms are: the number of DRL's, its reconfiguration time
fand its relation to the tasks’ average execution time), the size of
the event window (EW) and the used priority function,

With the idea to cover a wide range of applications, we have
generated synthetically task graphs using TGFF. We have
generated four different test-benches. Each one of these test-
benches has three task graphs, and each task graph has in average
25 1asks. The number of task types (in each one of the test-
benches) is 5., 10, 15 and 20, respectively.

The number of DRL’s used in the experiments is 2, 4 and 8. The
reconfiguration time of the DRL’s is a value, which is relative to
the tasks average execution time. Thus, the used reconfiguration
times are 4x, 2x, lx, ¥4t and Yx the tasks’ average execution
time in a DRL. The event window size is another parameter we
have tested. It has been tested for sizes between | and 16.
Finally, we have used two functions to assign the TaskPriority
field of the events. These two functions are: (1} critical path
analysis (cp), and (2) number of output edges (oe) of the task.

209



6.1. Obtained Results

Samples of the obtained results are shown in figure 6. The
pictures show performance when the event window (EW)
increases. The EW size has been found to be one of the key
parameters of the dynamic scheduling algorithms. A trade-off
must be performed when selecting the EW size. Scheduling
algorithms need big EW sizes to perform a better scheduling. As
events are inserted in order in the event stream but no in the EW,
smaller EW sizes allow 10 maintain more sorted the event stream.
We cannot compare our technigues to any other approach, since
previous approaches to HW/SW scheduling for DRL-based
architectures and DRL multi-context scheduling are based on
static scheduling techniques.

Figures 6.a. shows the execution time when two DRL’s with a 4x
reconfiguration time are used. It is possible to observe the results
obtained when using both single execution schedulers (v/ and v2
respectively) and the concurrent execution scheduler (v3) without
replication. Moreover, the results of using both priority functions
are shown. From figure 6.a., it may be concluded that when few
DRL's with slow reconfiguration time (4x) are used, then:

(1) There is a great impact of the priority function in all
schedulers. The number of output edges (oe) priority function
obtains better resulls than vsing a critical path analysis function.
(2} The out-of-order and concurrent dynamic schedulers require
events windows of large size in order to improve performance.
However, the benefits of the out-of order scheduler compared to
the in-order scheduler may be reduced when: (1) the number of
DRL increases, or (2) DRL’s with a fast reconfiguration time are
used. These both conditions mean a perfect overlapping of
execution and reconfiguration when using the in-order scheduler.
The results for the concurrent dynamic scheduler are presented in
figure 6.b. We can observe the results obtained when using four
DRL’s. Resuits for reconfiguration times 4x, Ix and %x, are
presented and compared to an all HW solution, where no
reconfiguration overheads exits (i.e. lower bound). The optimal
EW size also depends on the DRL reconfiguration time. When
using DRL’s with sjow reconfiguration time, bigger EW sizes are
required. However, if DRL’s with fast reconfiguration times are
used, the EW size may be reduced.

Finally, figure 6.c. compares the concurrent dynarnic scheduling
(v3) and the dynamic scheduling algorithm with replication {(v4).
In this picture, the results correspond 10 an architecture with 8
DRL’s with different reconfiguration times (4x and %x). The
replication strategy obtains better results if DRL’s with fast
reconfiguration time are used. In case that DRL's with slow
reconfiguration time are used, the scheduler with replication
obtains worst results than the concuirent scheduler.

Opmasmic Sehupuiing Perirmance &usnion

Dymmre Scnatuing. Pt Erakmson

7. CONCLUSIONS

Dynamic run-time scheduling for SoC platforms has become an
important field of research. However, no previous work has been
carried ‘out in dynamic DRL multi-context scheduling and
dynamic HW/SW scheduling for DRL-based architectures. We
have addressed this open probiem and we have presented: (1) a
dynamic scheduler hardware architecture, and (2) four dynamic
scheduiing algorithms for DRL muiti-context platforms. These
algorithms cover a wide range of designs. Out-of-order dynamic
scheduling can be applied 10 low-power designs (idle and wait
states can represent fow-power states). Concurrent dynamic
scheduling should be applied to designs where both power and
performance are critical. Finally, concurrent dynamic scheduling
with replication can be used in high-performance designs.

An exhaustive study of these scheduling algorithms has been
performed, and the effect of the algorithms parameters has been
studied. Results demonstrate the benefits of our approach.

REFERENCES

[1] hup//www.chameleonsystems.com/

[2] F. Balarin, ez al., “Scheduling for Embedded Real-Time Systemns”,
IEEE Design and Test, Jan-March, 1998.

[3] L. Benini, A. Bogliolo, G. De Micheli, “A Survey of Design
Techniques for System-Level Dynamic Power Management”. IEEE
Transactions on VLSI Systems. Vol. 8. 1ssue 3. June 2000.

(4] XK. Chana, R. Vemur:, “Hardware-Software Codesign for
Drymarnically Reconfigurable Architectures™, Proc. of FPL"99,

[5] R.P. Dick. N. K. Jha, “CORDS: Hardware-Software Co-Synthesis
of Reconfigurable Real-Time Distributed Embedded Systems”.
Proc. of ICCAD98.

[6] R.P. Dick, D.L. Rhodes, W. Wolf, “TGFF: Task Graphs For Free”,
in Proc. Int. Workshop Hardware/Software Codesign, Mar. 1998.

{71 S. Hauck., “Configuration Prefexch for Single Context
Reconfigurable Coprocessors™, ACM Int. Symp. on FPGA, 1998.

[B] B. Jeong et al.. “Hardware-Software Cosynthesis for Run-Time
Incrementatly Reconfigurable FPGAs™. Proc. ASP-DAC 2000.

[9]1 A Kalavade et al., "Software Environment for a Multiprocessor
DSP”. Proc. of Design Automation Conference (DAC), 1999.

(10] R. Maestre er af. “Kemel Schedfuling in  Reconfigurable
Computing”, Proc. of DATE'99.

[11] 1. Noguera, R. M. Badia, “Run-Time HW/SW Codesign for
Discrete Event Systems using Dynamically Reconfigurable
Architectures”, Proc. of 1S83°2000.

[12] J. Noguera, R. M. Badia, “A HW/SW Panitioning Algorithm for
Dynamucally Reconfigurable Architectuses”, Proc. of DATE 2001

[13] K. Puma, D. Bhatia, " Temporal Partitioning and Scheduling Data
Flow Graphs for Re-configurable Computers™, [EEE Trans. on
Computers, vol. 48, No. 6. June 1999.

[14] C. Wong er al, “Task Concurrency Management Methodology 1o
Schedule the MPEG4 IM1 Player on a Highly Parallel Processor
Platformy”. Proc. CODES™01.

=t = \ =

H = i Y E,,,l

: pemrmen i AN ED

g %M A, \\-___ ‘;: :\\ -W

Yoz o3 e 3 B T 8 ¥ W omomon ouodow

Event Wincks (£W) S

VT3 4 s g o 3w
B Winatoes (EW) Sith

7o oMo

e s —se =g s wm v ag)

[t dic =A@ iln —a=vign it * = www toud

(a)

I

Figure 6. Obtained Results,

210

201 4 5 & 7 4 % weomozoAouoow
Evand Wingow (E¥) $um

[ omie mrmems +ams e

©




	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


